29,667 research outputs found

    Comparison of children's free-living physical activity derived from wrist and hip raw accelerations during the segmented week.

    Get PDF
    This study assessed children's physical activity (PA) levels derived from wrist-worn GENEActiv and hip-worn ActiGraph GT3X+ accelerometers and examined the comparability of PA levels between the two devices throughout the segmented week. One hundred and twenty-nine 9-10-year-old children (79 girls) wore a GENEActiv (GAwrist) and ActiGraph GT3X+ (AGhip) accelerometer on the left wrist and right hip, respectively, for 7 days. Mean minutes of light PA (LPA) and moderate-to-vigorous PA (MVPA) per weekday (whole-day, before-school, school and after-school) and weekend day (whole-day, morning and afternoon-evening) segments were calculated, and expressed as percentage of segment time. Repeated measures analysis of variance examined differences in LPA and MVPA between GAwrist and AGhip for each time segment. Bland-Altman plots assessed between-device agreement for LPA and MVPA for whole weekday and whole weekend day segments. Correlations between GAwrist and AGhip were weak for LPA (r = 0.18-0.28), but strong for MVPA (r = 0.80-0.86). LPA and MVPA levels during all weekday and weekend day segments were significantly higher for GAwrist than AGhip (p < 0.001). The largest inter-device percent difference of 26% was observed in LPA during the school day segment. Our data suggest that correction factors are needed to improve raw PA level comparability between GAwrist and AGhip

    Preparation and characterization of in situ polymerized cyclic butylene terephthalate/graphene nanocomposites

    Get PDF
    Graphene reinforced cyclic butylene terephthalate (CBT) matrix nanocomposites were prepared and characterized by mechanical and thermal methods. These nanocomposites containing different amounts of graphene (up to 5 wt%) were prepared by melt mixing with CBT that was polymerized in situ during a subsequent hot pressing. The nanocomposites and the neat polymerized CBT (pCBT) as reference material were subjected to differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), thermogravimetrical analysis (TGA) and heat conductivity measurements. The dispersion of the grapheme nanoplatelets was characterized by transmission electron microscopy (TEM). It was established that the partly exfoliated graphene worked as nucleating agent for crystallization, acted as very efficient reinforcing agent (the storage modulus at room temperature was increased by 39 and 89% by incorporating 1 and 5 wt.% graphene, respectively). Graphene incorporation markedly enhanced the heat conductivity but did not influence the TGA behaviour due to the not proper exfoliation except the ash content

    Synchronized Optical and Electronic Detection of Biomolecules Using a Low Noise Nanopore Platform

    Get PDF
    In the past two decades there has been a tremendous amount of research into the use of nanopores as single molecule sensors, which has been inspired by the Coulter counter and molecular transport across biological pores. Recently, the desire to increase structural resolution and analytical throughput has led to the integration of additional detection methods such as fluorescence spectroscopy. For structural information to be probed electronically high bandwidth measurements are crucial due to the high translocation velocity of molecules. The most commonly used solid-state nanopore sensors consist of a silicon nitride membrane and bulk silicon substrate. Unfortunately, the photoinduced noise associated with illumination of these platforms limits their applicability to high-bandwidth, high-laser-power synchronized optical and electronic measurements. Here we present a unique low-noise nanopore platform, composed of a predominately Pyrex substrate and silicon nitride membrane, for synchronized optical and electronic detection of biomolecules. Proof of principle experiments are conducted showing that the Pyrex substrates have substantially lowers ionic current noise arising from both laser illumination and platform capacitance. Furthermore, using confocal microscopy and a partially metallic pore we demonstrate high signal-to-noise synchronized optical and electronic detection of dsDNA

    Ex vivo evaluation of mucosal responses to vaccination with ALVAC and AIDSVAX of non-human primates

    Get PDF
    Non-human primates (NHPs) remain the most relevant challenge model for the evaluation of HIV vaccine candidates; however, discrepancies with clinical trial results have emphasized the need to further refine the NHP model. Furthermore, classical evaluation of vaccine candidates is based on endpoints measured systemically. We assessed the mucosal responses elicited upon vaccination with ALVAC and AIDSVAX using ex vivo Rhesus macaque mucosal tissue explant models. Following booster immunization with ALVAC/AIDSVAX, anti-gp120 HIV-1CM244-specific IgG and IgA were detected in culture supernatant cervicovaginal and colorectal tissue explants, as well as systemically. Despite protection from ex vivo viral challenge, no neutralization was observed with tissue explant culture supernatants. Priming with ALVAC induced distinct cytokine profiles in cervical and rectal tissue. However, ALVAC/AIDSVAX boosts resulted in similar modulations in both mucosal tissues with a statistically significant decrease in cytokines linked to inflammatory responses and lymphocyte differentiation. With ALVAC/AIDSVAX boosts, significant correlations were observed between cytokine levels and specific IgA in cervical explants and specific IgG and IgA in rectal tissue. The cytokine secretome revealed differences between vaccination with ALVAC and ALVAC/AIDSVAX not previously observed in mucosal tissues and distinct from the systemic response, which could represent a biosignature of the vaccine combination

    Relative Acceleration Noise Mitigation for Nanocrystal Matter-wave Interferometry: Application to Entangling Masses via Quantum Gravity

    Get PDF
    Matter wave interferometers with large momentum transfers, irrespective of specific implementations, will face a universal dephasing due to relative accelerations between the interferometric mass and the associated apparatus. Here we propose a solution that works even without actively tracking the relative accelerations: putting both the interfering mass and its associated apparatus in a freely falling capsule, so that the strongest inertial noise components vanish due to the equivalence principle. In this setting, we investigate two of the most important remaining noise sources: (a) the non-inertial jitter of the experimental setup and (b) the gravity-gradient noise. We show that the former can be reduced below desired values by appropriate pressures and temperatures, while the latter can be fully mitigated in a controlled environment. We finally apply the analysis to a recent proposal for testing the quantum nature of gravity [S. Bose et. al. Phys. Rev. Lett 119, 240401 (2017)] through the entanglement of two masses undergoing interferometry. We show that the relevant entanglement witnessing is feasible with achievable levels of relative acceleration noise

    Biohydrogenation of 22:6n-3 by Butyrivibrio proteoclasticus P18

    Get PDF
    Background: Rumen microbes metabolize 22:6n-3. However, pathways of 22:6n-3 biohydrogenation and ruminal microbes involved in this process are not known. In this study, we examine the ability of the well-known rumen biohydrogenating bacteria, Butyrivibrio fibrisolvens D1 and Butyrivibrio proteoclasticus P18, to hydrogenate 22:6n-3. Results: Butyrivibrio fibrisolvens D1 failed to hydrogenate 22:6n-3 (0.5 to 32 mu g/mL) in growth medium containing autoclaved ruminal fluid that either had or had not been centrifuged. Growth of B. fibrisolvens was delayed at the higher 22:6n-3 concentrations; however, total volatile fatty acid production was not affected. Butyrivibrio proteoclasticus P18 hydrogenated 22:6n-3 in growth medium containing autoclaved ruminal fluid that either had or had not been centrifuged. Biohydrogenation only started when volatile fatty acid production or growth of B. proteoclasticus P18 had been initiated, which might suggest that growth or metabolic activity is a prerequisite for the metabolism of 22:6n-3. The amount of 22:6n-3 hydrogenated was quantitatively recovered in several intermediate products eluting on the gas chromatogram between 22:6n-3 and 22:0. Formation of neither 22:0 nor 22:6 conjugated fatty acids was observed during 22:6n-3 metabolism. Extensive metabolism was observed at lower initial concentrations of 22:6n-3 (5, 10 and 20 mu g/mL) whereas increasing concentrations of 22:6n-3 (40 and 80 mu g/mL) inhibited its metabolism. Stearic acid formation (18:0) from 18:2n-6 by B. proteoclasticus P18 was retarded, but not completely inhibited, in the presence of 22:6n-3 and this effect was dependent on 22:6n-3 concentration. Conclusions: For the first time, our study identified ruminal bacteria with the ability to hydrogenate 22:6n-3. The gradual appearance of intermediates indicates that biohydrogenation of 22:6n-3 by B. proteoclasticus P18 occurs by pathways of isomerization and hydrogenation resulting in a variety of unsaturated 22 carbon fatty acids. During the simultaneous presence of 18:2n-6 and 22:6n-3, B. proteoclasticus P18 initiated 22:6n-3 metabolism before converting 18:1 isomers into 18:0

    Late gadolinium uptake demonstrated with magnetic resonance in patients where automated PERFIT analysis of myocardial SPECT suggests irreversible perfusion defect

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myocardial perfusion single photon emission computed tomography (MPS) is frequently used as the reference method for the determination of myocardial infarct size. PERFIT<sup>® </sup>is a software utilizing a three-dimensional gender specific, averaged heart model for the automatic evaluation of myocardial perfusion. The purpose of this study was to compare the perfusion defect size on MPS, assessed with PERFIT, with the hyperenhanced volume assessed by late gadolinium enhancement magnetic resonance imaging (LGE) and to relate their effect on the wall motion score index (WMSI) assessed with cine magnetic resonance imaging (cine-MRI) and echocardiography (echo).</p> <p>Methods</p> <p>LGE was performed in 40 patients where clinical MPS showed an irreversible uptake reduction suggesting a myocardial scar. Infarct volume, extent and major coronary supply were compared between MPS and LGE as well as the relationship between infarct size from both methods and WMSI.</p> <p>Results</p> <p>MPS showed a slightly larger infarct volume than LGE (MPS 29.6 ± 23.2 ml, LGE 22.1 ± 16.9 ml, p = 0.01), while no significant difference was found in infarct extent (MPS 11.7 ± 9.4%, LGE 13.0 ± 9.6%). The correlation coefficients between methods in respect to infarct size and infarct extent were 0.71 and 0.63 respectively. WMSI determined with cine-MRI correlated moderately with infarct volume and infarct extent (cine-MRI vs MPS volume r = 0.71, extent r = 0.71, cine-MRI vs LGE volume r = 0.62, extent r = 0.60). Similar results were achieved when wall motion was determined with echo. Both MPS and LGE showed the same major coronary supply to the infarct area in a majority of patients, Kappa = 0.84.</p> <p>Conclusion</p> <p>MPS and LGE agree moderately in the determination of infarct size in both absolute and relative terms, although infarct volume is slightly larger with MPS. The correlation between WMSI and infarct size is moderate.</p

    Bernardin Frankapan i Krbavska bitka: je li spasio sebe i malobrojne ili je pobjegao iz boja?

    Get PDF
    Veliki poraz hrvatske vojske od Osmanlija na Krbavskom polju 9. rujna 1493. predstavlja jednu od najvažnijih epizoda u dugotrajnom obrambenom ratu Hrvata protiv Osmanlija. Iako su uzroci i posljedice, pa i sam tijek bitke, već u znatnoj mjeri prikazani u starijoj i novijoj hrvatskoj historiografiji, ipak su uloga i djelovanje kneza Bernardina Frankapana u samoj bitki i događajima koji su joj prethodili, ostali u značajnoj mjeri nerasvijetljeni i nerazjašnjeni. Autor na osnovi sačuvanih pisanih i arheoloških svjedočanstva, kao i nakon uvida na terenu, analizira događaje koji su prethodili Bernardinovu povlačenju iz bitke, pokušavajući odgonetnuti uzroke i motive takova poteza. Isto tako, detaljnijim uvidom u sačuvana pisana svjedočanstva o događajima prije Krbavske bitke, pokušava objasniti odnose između bana Derenčina i knezova Frankapana.The great defeat of Croatian army against ottoman troops in the battle of Krbava field (9th September 1493) is one of the most important episode in long–lasting defensive war against Ottoman Empire. Although, the causes and the consequences, and the very duration of the battle, are already elaborated in older and newer Croatian historiography, the role and actions of the duke Bernardin Frankapan in the events before battle and in the battle are still not illuminated and dismissed. Analyzing the written sources and archeological artifacts, author describes events that are preceded Bernardin’s evacuation from the battle. He is, also, trying to figure out the motives and causes of such actions. Further more, by detailing analysis of written sources about events before battle of Krbava field, author clarifies relationships between banus Derenčin and ducal family of Frankapan
    corecore